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a b s t r a c t

In this study, we examine how to motivate computer users to protect themselves from potential security
and privacy threats. We draw on the Information Processing framework which posits that threat miti-
gation commonly occurs before full cognitive threat assessment and we conduct an empirical study to
evaluate the effects of an exposure to general information security threats on the strength of passwords
and the disclosure of personal information. Through an online experiment, we compare immediate
computer user reactions to potential non-individually specific security and privacy threats in an extra-
organizational context. We find evidence consistent with automatic security and privacy protective ac-
tions in response to these threats. Computer users exposed to news stories about corporate security
breaches limit the disclosure of sensitive personal information and choose stronger passwords. The study
complements the existing behavior modification research in information security by providing the
theoretical and empirical foundation for the exploration of automatic security and privacy threat miti-
gation strategies across different contexts.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Continued integration of technology into everyday life exposes
technology users to growing security and privacy risks. According
to a survey of Chief Information Officers by Pricewaterhou-
seCoopers, 42.8 million security incidents were detected in 2016,
showing a 48% increase over the previous year
(PricewaterhouseCoopers, 2017). The economic impact of the se-
curity breaches is estimated at nearly half a trillion dollars globally
(Ponemon Institute, 2017). Password breaches are one of the most
common information security failures. Although there is a consid-
erable body of research on the best practices in secure computing
(Fernandez-Aleman, Senor, Lozoya, & Toval, 2013; Yang & Tate,
2012; Zeng, Wang, Deng, Cao, & Khundker, 2012), companies
continue to struggle with preventing password breaches. In 2015,
the Central Intelligence Agency discovered that 47 government
agencies, including the Department of Homeland Security, were
edu (S. Mamonov), rbfich@
compromised, giving the hackers access to over 21 million gov-
ernment employee accounts (Hirschfield Davi, 2015). Equifax, one
of the three largest credit agencies, recently reported that it suf-
fered a breach that affected 143 million consumers (McMillan &
Knutson, 2017) and Yahoo announced that over three billion user
accounts were impacted in the previously reported breach
(Andriotis & McMillan, 2017). These events indicate that secure
password selection and protection remains a problematic area of
practice that merits further research.

News of security breaches feeds a parallel trend in modern so-
ciety because they exacerbate concerns about potential privacy
violations. Increased reliance on technology to store and commu-
nicate personally identifiable information exposes technology
users to ever-growing privacy risks. Yet, researchers have found
that, seemingly in contradiction to increasing privacy concerns,
people continue to disclose ever-growing volume of personal in-
formation online (Barnes, 2006) and this trend shows no signs of
slowing down. Recent social media statistics show that Facebook
users share over 300 million images through the social network
platform every day (Zephoria Digital Marketing, 2017). The growing
frequency of security incidents along with the mounting volume of
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technology-mediated information disclosure raises the question of
how to motivate technology users to protect themselves.

Interdisciplinary research has established that people have two
alternative information processing systems: automatic (fast) and
effortful cognitive (slow) (Kahneman, 2011). The cognitive
approach to motivating employee compliance with organizational
security policies has been a central theme in Information System
search (Sommestad, Karlz�en, & Hallberg, 2015). However, little is
known about the automatic reactions of technology users to im-
mediate perceived privacy and security threats. We draw on the
Information Processing (IP) framework (Beck & Clark, 1997), which
emphasizes automatic threat mitigation in response to threatening
stimuli and we conduct an experimental study to evaluate the ef-
fects of an exposure to information security threats on the strength
of passwords and disclosure of personal information. We manipu-
late the exposure to information security threats by showing the
participants different types of news stories. The control group is
exposed to general technology-related news, while the treatment
group is exposed to computer security breach related stories. For
these two conditions, we evaluate the differences in two behavioral
variables: the strength of passwords chosen by participants to
protect their responses and the degree of refusal to answer per-
sonal questions in a self-disclosure survey.

2. Theoretical background and hypotheses

The focus of our study is on the automatic computer user re-
actions to potential security and privacy threats. We draw on the IP
framework as the theoretical foundation for our study. The IP
framework posits that threat mitigation often precedes full cogni-
tive threat assessment (Beck & Clark, 1997). Before we discuss the
automatic threat mitigation, we will review the established stream
of research which has focused on a related question of how to
motivate employee compliance with organizational security pol-
icies through cognitive persuasion. This stream of research evolved
from the observation that organizational insiders are often
responsible for the organizational security breaches (Zadelhoff,
2016). Promoting organizational security policy compliance is
seen as a key factor in corporate security breach prevention.

Protection motivation theory (PMT), which was initially devel-
oped in health-related behavior modification research (Maddux &
Rogers, 1983; Prentice-Dunn & Rogers, 1986; Rogers, 1975), has
served as the focal theoretical foundation for the stream of research
examining ways to persuade employees to adhere to organizational
security policies (Sommestad et al., 2015). PMT research on health-
related topics provided evidence that exposure to “persuasive
messages designed to scare people by describing the terrible things
that will happen to them if they do not do what the message rec-
ommends” can be effective in motivating behavior modification,
e.g. in motivating people to quit smoking (Witte, 1992). PMT posits
that perceived threat severity, perceived vulnerability, self-efficacy
and response efficacy are the key factors that affect individual
behavioral intentions (Maddux & Rogers, 1983; Prentice-Dunn &
Rogers, 1986). Applying PMT to the organizational security policy
compliance contexts, prior research has shown that fear appeals
and threats of personal responsibility can have a positive effect on
employee intention to follow organizational policies (Ifinedo, 2014;
Johnston & Warkentin, 2015). However, the results have not been
consistent across the studies. For example, a study of employee
intention to comply with organizational security policies in the
United States showed no significant effects of perceived threat
severity or perceived threat susceptibility after considering the
effects of perceived security policy legitimacy and organizational
value congruence (Son, 2014). A recent study by Boss et al (Boss,
Galletta, Lowry, Moody, & Polak, 2015). involving student re-
actions to malware threats similarly found no significant direct
effects for perceived threat severity and perceived susceptibility on
the behavioral intention. Contrary to the predictions of the PMT,
Boss et al. (2015) also documented a negative effect of self-efficacy
on the behavioral intention. Individually-relevant fear appeals are
at the core of PMT because fear is believed to be the core emotion
that motivates changes in attitudes and behavioral intentions
(Floyd, Prentice-Dunn, & Rogers, 2000; Johnston, Warkentin, &
Siponen, 2015). Recent neuroimaging studies have further chal-
lenged PMT assumptions in information security research by
showing that computer security-related warnings commonly fail to
produce activation in the brain regions associated with fear
(Warkentin, Johnston, Walden, & Straub, 2016).

In addition to the inconsistencies concerning the effects of the
core PMTconstructs in information security research, there has also
been very little work on examining actual user behaviors using
objective security-related behavior measures. The majority of
studies applying PMT to examine organizational security policy
compliance have been limited to measuring respondents' in-
tentions (Sommestad et al., 2015). The studies that did measure
security policy compliance have generally relied on self-reports.
The only study which measured PMT constructs and actual be-
haviors did so measuring behaviors first and PMT constructs sec-
ond, thus undermining the interpretation of the results on the
effects of PMT constructs in motivating the behaviors (Boss et al.,
2015). A summary of security policy compliance studies that
include compliance behavior measures is presented in Appendix
A1. Prior research has shown that self-reports can be unreliable
in security (Sonnenschein, Loske, & Buxmann, 2016) and privacy-
related (Barnes, 2006) contexts. Hence, the question of whether
fear appeals can be effective in promoting actual user compliance
with the organizational security policies remains open.
Technology-mediated personal information disclosure also exposes
the users to privacy risks. Self-disclosure has similarly been
extensively studied in Information Systems, yet the vast majority of
studies have relied on self-reports to assess individual self-
disclosure. Li, Lin, and Wang (2015) exemplify a parallel approach
to evaluating self-disclosure which relies on the analysis of sec-
ondary data, e.g. information that people share in social networking
sites. There has been little in the way of experimental evidence on
factors that may affect self-disclosure. A summary of recent studies
involving evaluation of different factors that affect self-disclosure is
provided in Appendix A2. In the present study, we seek to address
the relative lack of knowledge about actual security and privacy-
related user behaviors by examining automatic responses that
occur following the exposure to information about the potential
threats. To this end, we apply the IP framework proposed by Beck
and Clark (1997) to lay the theoretical foundation for our study.
The IP framework posits that the behavioral response to a threat
often precedes cognitive assessment of the potential hazard. These
predictions have been confirmed in individual psychology (Zajonc,
1980) and in marketing (Obermiller & Spangenberg, 1989). This
framework is suitable to evaluate users’ actions from a pragmatic
perspective. Due to the time pressures of modern life, people are
often motivated to make split-second decisions that simply do not
leave much room for cognitive evaluation. This may occur, for
example, when a user is requested to specify a new password or is
prompted with a request for personal information online.

The IP framework posits that threat-related information pro-
cessing consists of three stages: automatic threat detection,
focusing of attentional resources towards goal-directed activities,
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and secondary elaboration. The first stage, termed automatic pro-
cessing, consists of automatic identification of threatening stimuli.
Threat detection is involuntary and it occurs without conscious
awareness. The second stage in the IP framework emphasizes that
finding a solution to the detected threat is the primary response to
a threat. This second stage is characterized by autonomic arousal,
narrowing of cognitive focus on the threat and behavioral mobili-
zation in response to the threat. Recent functional magnetic reso-
nance studies have shown that exposure to a threating stimulus is
strongly associated with increasing activity in the problem-solving
areas of the brain, supporting the propositions of the IP framework
(Bishop, Duncan, Brett, & Lawrence, 2004) and these results have
been confirmed in the computer security domain (Warkentin et al.,
2016). The third stage in the framework is termed secondary elab-
oration and it encompasses strategic information processing, which
includes assessment of one's ability to cope with similar threats in
the future. This stage is characterized as a slow and effortful pro-
cess, which is affected by a person's prior knowledge and mental
schemas. In other words, the IP framework posits that the cognitive
assessment of one's vulnerability to a threat and individual
response self-efficacy commonly occurs after the actual mitigation
of the threat. While threats in the environment often require im-
mediate action, threat mitigation does not require cognitive
assessment of individual vulnerability or efficacy.

While the IP framework is well suited for studying actual user
behavior in response to the immediate privacy and security threats, it
is important to highlight the key differences between the IP frame-
work and PMT. PMT sheds light on which attitudes and perceptions
can affect the intent to protect one's privacy and security and it may
help in motivating employee compliance with the organizational
computer security policies. In contrast, the IP framework helps us
understand how technology users actually react to the immediate
perceived security and privacy threats. PMT presumes that behaviors
are affected by thebehavioral intentionswhich in turn canbe affected
by perceptions of threat severity, individual vulnerability, general
self-efficacyand thespecific responseself-efficacy (Maddux&Rogers,
1983; Rippetoe & Rogers, 1987). The IP framework is relevant in un-
derstanding how users respond to immediate threats that require
immediatemitigation (Beck&Clark,1997). The frameworkposits that
in the contexts that require immediate threat mitigation cognitive
assessment (secondary elaboration) does not occur until after the
threat is mitigated, i.e. user takes action before perceptions and atti-
tudes are reassessed. By experimentally manipulating the presence
(or absence) of a potential threat, we will investigate its potential
effect on actual user behavior. The study is thus focusedon the second
stage of the IP framework, which encompasses automatic threat
mitigation. Inparticular, to assess the predictions of the IP framework
in the context of technology users' reactions to security and privacy
threats, we examine two key user behaviors: the strength of newly
chosen passwords and the reluctance to disclose personal informa-
tion. The strength of passwordsprovides an indication of a reaction to
a perceived immediate security threat, whereas the disclosure of
personal information (or lack thereof) provides evidence of a reaction
to a perceived immediate privacy threat. Next, we provide a brief
overview of the role of passwords in information security.

Information confidentiality along with integrity and availability
are the core objectives of information security measures (Bishop,
2004). Confidentiality refers to keeping data secret. Secrecy of in-
formation is commonly accomplished by implementing user
authentication and establishing access controls that restrict who
has access to what. User authentication can be accomplished
through a combination of techniques that are either knowledge-
based (“what you know”), possession-based (“what you have”) or
biometric-based (“who you are”). The highest level of protection is
afforded by biometric authentication (Burrows, Abadi, & Needham,
1989). While multi-factor authentication is widely recommended,
most e-commerce systems in place today rely on a single-factor
authentication, mainly passwords. Creating secure passwords
presents a common challenge. For passwords to be effective, the
users have to be able to remember them, yet the passwords have to
be difficult to guess. Strong passwords, based on unusual combi-
nations of letters, numbers and symbols, are often difficult to
remember (Nelson & Vu, 2010; Yan, 2004). Consequently, studies
have repeatedly shown that technology users often rely on weak
passwords for authentication online (Dell’Amico, Antipolis,
Michiardi, & Roudier, 2010) and password breaches stemming
from brute-force password-guessing attacks are a common phe-
nomenon in practice (Bright, 2014; Hill, 2014).

Drawing on the IP framework, we expect that exposure to in-
formation highlighting recent computer security breaches will
trigger automatic processing which will identify the stories as a
source of potential threat to individual computer security. The
automatic threat identification will trigger mobilization of cogni-
tive efforts to address the apparent threats and consequently the
users exposed to the stories about computer security breaches will
choose stronger passwords compared to the users exposed to
general technology-related news stories.

H1. Awareness of information security threats has a positive effect
on the strength of newly chosen passwords.

Another form of threat mitigation is the refusal to disclose in-
formation. Self-disclosure is defined as the act of revealing personal
information to others (Jourard, 1971). Self-disclosure is an impor-
tant part of self-expression (Livingstone, 2008) and it plays a key
role in the development of social relationships (Cozby, 1973).
Reciprocated self-disclosure helps to identify common ground and
build trust in relationships (Wheeless & Grotz, 1977). In addition to
serving individual goals, self-disclosure can have an impact that
goes beyond the individual. For example, a study of online product
reviews on Amazon.com found that disclosure of personal infor-
mation within product reviews influences review evaluation and
subsequent self-disclosure by other reviewers (Forman, Ghose, &
Wiesenfeld, 2008).

Early research on computer-mediated communication sug-
gested that technical restrictions, which preclude transmission of
non-verbal cues, may lead users to increase self-disclosure in
technology-mediated contexts in order to overcome technology
limitations (Joinson, 2001). Perhaps few social phenomena capture
apparent willingness among people to disclose personal informa-
tion, as do social networking sites and social media. Estimates
suggest that users share nearly 3 million bits of information
through Facebook every minute (Wishpond, 2015). Facebook has
announced plans to commercialize the wealth of information
shared by users through the service (Don Mathis, 2014), suggesting
that much of the information shared by the users through the
service reveals something personal about them.

Perceptions of a privacy threat associated with computer security
breaches will trigger an automatic response to the threat and action
to address the risk to individual private information. It is important
to note that while security breaches and privacy violations are
conceptually distinct, in practice these threats often occur together. A
security breach takes place when there is an instance of unautho-
rized computer access, regardless of the purpose of the access or
whether actual data was compromised. In contrast, a privacy viola-
tion occurs when personally identifiable information collected for
one purpose is used for another purpose without the individual's
consent (Mamonov & Benbunan-Fich, 2015; Mamonov & Koufaris,
2014). Since personal data is increasingly collected and stored in
databases and it commands high resale value in secondary markets,
security breaches are often accompanied by privacy violations (Lord,
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2016). For individuals concerned about privacy, withholding infor-
mation (non-disclosure) presents one potential coping action in the
face of a privacy threat (Joinson, Reips, Buchanan,& Schofield, 2010).
Consequently, we expect that users exposed to stories about com-
puter security breaches will disclose less information than users
exposed to general technology-related news.

H2. Awareness of information security threats has a positive effect
on the refusal to disclose personal information (non-disclosure).

How people react to different threats is in part determined by
individual characteristics. Self-efficacy, the belief that one has the
ability to perform a particular behavior, is among the key individual
attributes which affect human activity across different domains
(Bandura, 1977). Domain-specific self-efficacy is generally a better
predictor of individual behaviors and computer self-efficacy has
emerged as an important factor that predicts anxiety associated
with computer use and system usage intention (Compeau &
Higgins, 1995). Self-efficacy has also been shown to play a role in
e-commerce use (McElroy, Hendrickson, & Townsend, 2007) and
contributions to corporate knowledge management systems
(Kankanhalli, Tan, & Wei, 2005). In the domain of computer secu-
rity and privacy, self-efficacy has been shown to be positively
related to self-reported protective behaviors, e.g. removal of
cookies from the computer (Milne, Labrecque, & Cromer, 2009).

The Information Processing framework suggests that individual
self-efficacy assessment occurs after the automatic threat mitiga-
tion, as a long-term process aimed at evaluating and adjusting one's
level of self-efficacy. However, extensive research in management
and information systems suggests that self-efficacy reflects one's
experience in a specific domain, and therefore it could influence the
speed and efficacy of automatic behaviors (Tiffany, 1990). While
much of the research on the role of self-efficacy in general human
behavior has focused on the direct effect of self-efficacy on the
behavioral intention, computer security-related studies (Anderson
& Agarwal, 2010; Johnston et al., 2015), have emphasized that
self-efficacy not only has the direct effects, but it alsomoderates the
response to specific threats (Maddux & Rogers, 1983). This effect
has been confirmed in an experimental study which showed that
security related self-efficacy moderates the computer security
prevention intention in response to a security threat (LaRose, Rifon,
& Enbody, 2008). Drawing on these theoretical roots and empirical
findings, we expect that privacy self-efficacy, i.e. one's assessment
of his or her ability to protect privacy online, will moderate the
effects of exposure to security-related breach stories on both the
strength of passwords that people use to protect their responses
and the degree of non-disclosure to personal questions.

H3a. Privacy self-efficacy will positively moderate the effect of
awareness of information security threats on the strength of
passwords.

H3b. Privacy self-efficacy will positively moderate the effect of
awareness of information security threats on the refusal to disclose
personal information.

Threat mitigation responses include securing information with
protection mechanisms such as passwords, and evaluating the
disclosure risks of new information. Passwords can provide a de-
gree of control over personal information. Greater perceived con-
trol over information has been linked with greater wiliness to
disclose private information in research (Taddei & Contena, 2013)
and in practice (Cavusoglu, Phan, Cavusoglu,& Airoldi, 2016).When
a new protection mechanism is used to secure information, users
may perceive higher levels of safety and lower risks of privacy
breaches. A meta-analysis of self-disclosure in computer-mediated
contexts shows that perceived safety is positively related to
disclosure of personal information (Weisband & Kiesler, 1996).
Therefore, we expect that selecting a stronger passwordwould lead
to lower levels of withholding personal information.

H4. The strength of newly chosen passwords will be negatively
related to the refusal to disclose personal information.

The research model is summarized in Fig. 1 below.

3. Methodology

We conducted a between-groups online experiment to evaluate
the hypotheses in our study.

3.1. Participants

We recruited the participants from Amazon Mechanical Turk
(AMT). AMT is an online labor market for micro tasks. AMT re-
questers post tasks and offer compensation for task completion.
AMT workers elect to work on the tasks and receive compensation
upon task completion. AMT represents a readily accessible pool of
over 500,000 workers that affords a more representative partici-
pant pool for research studies compared to student samples
commonly used in research. AMT has been actively used for mar-
keting and psychology studies (Buhrmester, Kwang, & Gosling,
2011; Whitla, 2009) and it has also been recommended as a
source of participants for user behavior research (Steelman,
Hammer, & Limayem, 2014), and for studies that focus on extra-
organizational behaviors (Lowry, D'Arcy, Hammer, &Moody, 2016).

We required potential participants to be based in the United
States to avoid potential cultural effects in our samples. We
recruited 400 participants for our study and we paid $0.75 per
participant. This level of compensation was on par with other
similar tasks available on AMT. We included several trap questions
in the demographic survey to assure that the participants were
actually reading the survey questions. We excluded 10 participants
from the analysis due to automatic response bias (same answers for
all questions) or leaving most of the questions blank.

We used random assignment to assign participants to one of
two experimental conditions. 191 participants were assigned to the
control group and 199 participants were assigned to the treatment
condition. The average age for control and the treatment groups
was 37.2± 12.9 and 35.4± 11.4 respectively. 52% and 54% of the
participants were male in the control and the treatment groups
respectively. In terms of education, 36% of the control group and
39.4% of the treatment group had completed their undergraduate
education and further 27.5% and 30.6% of the control and treatment
groups respectively had taken college courses, but had not yet
completed their undergraduate degree programs.

4. Materials

Each study participant was exposed to four stories. The control
group was exposed to four general technology-related stories. The
treatment groupwas exposed to four stories describing instances of
corporate computer security breaches. The stories were presented
in the same order to the participants in each group. Sample stories
are provided in Appendix B. We validated the expected treatment
effects of the exposure to the news stories in a pilot study in which
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Fig. 1. Research model.
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we exposed the participants to either of the two sets of news stories
and surveyed the responses to the questions concerning the extent
of privacy and security risks posed by online information sharing.

Following the exposure to the stories, we asked the participants
to set a password to protect the answers to a self-disclosure
questionnaire. The instrument presented a series of 18 questions
to assess their willingness to disclose personal information, based
on (Joinson, Paine, Buchanan, & Reips, 2008). It includes questions
asking personal information such as: How many different sexual
partners have you had?, Have you ever deliberately viewed pornog-
raphy using the internet? One of the possible answers to each of the
18 questions assessing self-disclosure was “prefer not to say”. Prior
research has shown that this option encourages survey participants
to provide more complete and truthful information (Joinson,
Woodley, & Reips, 2007). We scored non-disclosure as the num-
ber of times that each participant selected the “prefer not to say”
response among the 18 questions comprising the self-disclosure
measure.
4.1. Procedures

The study was posted as a task on AMT and the workers who
elected to participate were provided with a link to an online survey
hosted on Qualtrics, a commercial survey platform. The study
received an IRB approval and the participants indicated their con-
sent to the participation in the study at the beginning of the study.
The experimental survey consisted of three parts: (1) showing
technology-related stories (general for the control group or cyber-
security breaches for the treatment group); (2) asking participants
to take a self-disclosure questionnaire but setting a specific pass-
word to protect their responses. We did not tell the participants
that the strength of passwords and non-disclosure were the
dependent variables at the beginning of the study; (3) debriefing at
the conclusion of the experiment to inform participants about the
objectives of the study. The participants were not limited in the
time that they took to complete the study.
4.2. Measures

Password strength was measured using a methodology devel-
oped in password security research (Florencio & Herley, 2007). The
methodology draws on information theory (Shannon, 1948) and it
estimates how many attempts would be required to guess a pass-
word. Password strength is calculated as a function of implied
character pool and password length. Character pool is a function of
the different types of characters that are used in the password. If a
password uses only lower case letters then there are 26 possible
values (a-z) at each position within the password. If a password
contains both upper and lower case letters, then the number of
possible characters at each position is 52. Numbers (0e9) add 10
potential characters to the list of possible characters at each posi-
tion. The use of special characters adds another 22 potential values
at each position. The total number of potential passwords given the
character pool and password length is calculated as: potential
combinations¼ [size of character pool]̂ password length. Prior
research on password security has adopted a log measure of
password strength as a standard (Florencio & Herley, 2007):

Password strength¼ log2(CL), where C is the size of the char-
acter pool and L is the length of the password.

In evaluating the effects of the experimental manipulation, we
also included age, gender, education, and privacy concerns about
information collection, and about unauthorized information use as
covariates. The scales for the privacy-related constructs are shown
in Appendix C.

5. Data analysis and results

We employed the Partial Least Square method through
SmartPLS version 3 software (Ringle, Sarstedt, & Straub, 2012). PLS
has an advantage over linear regression analysis in that the method
iteratively estimates item loadings on the latent factors and cor-
relations between the factors thus providing more robust estimates
of the latent construct values and the correlations among the
constructs (Hair, Ringle, & Sarstedt, 2011). Further, PLS does not
make any distributional assumptions and it is robust with non-
normally distributed data (Hair, Hult, Ringle, & Sarstedt, 2016).



Table 1
PLS loadings and cross-loadings.

Privacy Concerns -
Information Collection

Privacy Concerns -
Unauthorized Info Use

Privacy
Self-Efficacy

PrC_Col1 0.884 0.463 �0.103
PrC_Col2 0.701 0.516 �0.018
PrC_Col3 0.886 0.540 �0.114
PrC_Col4 0.931 0.486 �0.215
PrC_Una1 0.464 0.880 �0.027
PrC_Una2 0.488 0.817 �0.008
PrC_Una3 0.411 0.778 0.028
PrC_Una4 0.478 0.860 �0.015
PrivSE1 �0.146 �0.029 0.930
PrivSE2 �0.171 �0.022 0.934
PrivSE3 �0.166 0.006 0.923
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The password strength measure which is a key dependent variable
in our model is not normally distributed.

As the first step in our analysis, we evaluated the convergent and
discriminant validity as well as reliability of the survey instrument
in the present study. We assessed convergent validity by evaluating
item cross-loadings on constructs in the research model. The re-
sults are shown in Table 1. Individual survey items have loadings
above 0.7 on the respective constructs. The loadings on the
respective constructs exceed loadings on other constructs in the
model indicating good convergent validity. Discriminant validity
was assessed by comparing inter-construct correlations with the
square root of average variance extracted (AVE) for the respective
constructs, as shown in Table 2. The average variance extracted is
above 0.7 for all constructs and the square root of AVE is greater
than the correlation coefficients among the constructs, indicating
appropriate discriminant validity. Construct measurement reli-
ability was assessed using composite reliability and Cronbach's
alpha scores. The data are provided in Table 2. All values for com-
posite reliability and Cronbach's alpha are above the generally
accepted threshold of 0.70.
5.1. Structural model

We used PLS bootstrapping resampling procedure with 200
subsamples to assess the statistical significance of the standardized
path coefficients in our model. We found that awareness of infor-
mation security threats had a significant positive impact on the
strength of passwords (b¼ 0.23, p< 0.01). To ascertain the degree
of the difference in the password strength between the two groups
we determined the average log score for each group. The log score
for the control group was 34.3, the log score for the treatment
condition was 43.3. The participants in the group exposed to the
news about security breaches used 500 times stronger passwords
compared to the control group (243.3/234.3¼ 532.4). These results
provide support for H1.

The structural path between awareness of information security
Table 2
Descriptive statistics, measurement reliability, inter-construct correlations and square ro

Mean Standard
Deviation

Composite
reliability

Cronbach's
alpha

Privacy Concerns - Information
Collection

5.75 1.10 0.91 0.90

Privacy Concerns -
Unauthorized Info Use

6.32 0.82 0.90 0.87

Privacy Self-Efficacy 4.33 1.51 0.95 0.92
threats and non-disclosure in the PLS analysis was not significant.
Further examination of the results revealed that participants in both
groups answered “prefer not to say” less than once on average for the
18 questions assessing self-disclosure. We also did not find evidence
of statistically significant relationships between general privacy self-
efficacy and either password strength or non-disclosure behavior.
Privacy self-efficacy was not a statistically significant moderator of
the impact of awareness of information security threats on either
password strength or non-disclosure behaviors.

We hypothesized that respondents who choose stronger pass-
words would feel more confident in revealing personal information
than those with weaker passwords. However, the relationship be-
tween the strength of passwords and the refusal to disclose per-
sonal information was not statistically significant. Hence, H4 is not
supported. While participants were told that they had to set a
password to protect their answers, the strength of the password (or
lack thereof) did not influence the extent to which they disclose
sensitive information.

Given the unexpected lack of support for a positive relationship
between the exposure to security breach related stories and non-
disclosure (H2) from the PLS path analysis, we examined the re-
sponses to self-disclosure questionnaire in more detail. The ques-
tionnaire includes some fairly innocuous questions, e.g. are you
right or left handed, as well as fairly intrusive ones, e.g. information
about drug use. We examined the proportion of participants
responding “prefer not to say” to the individual questions. The re-
sults are shown in Appendix D.

Three of the eighteen individual questions on the self-
disclosure survey show significantly higher non-disclosure for
the group exposed to security breach related news. Following the
recommendations of Gefen, Rigdon, and Straub (2011) to evaluate
alternate models as a way of building stronger theoretical argu-
ments, we defined two new constructs: sensitive information
non-disclosure and non-sensitive information non-disclosure.
These constructs will enable us to examine whether people treat
potentially sensitive information differently. The sensitive infor-
mation non-disclosure was measured as the number of times the
participants responded “prefer not to say” to the three potentially
sensitive questions: 1) Have you ever driven whilst you suspected
you may be over the legal alcohol limit? 2) As an adult, have you
ever tried any drugs (other than alcohol and nicotine, e.g. mari-
juana, cocaine, ecstasy, heroin)? 3) Do you agree with the death
penalty?

We used the number of “prefer not to say” responses to the
remaining questions on the self-disclosure survey as themeasure of
non-sensitive information non-disclosure and we evaluated the
structural relationships in this model. We found that the exposure
to potential privacy and security threat had a positive effect on the
strength of passwords (b¼ 0.23, p< 0.01) and refusal to disclose
sensitive information (b¼ 0.12, p< 0.01). There was no significant
effect on the refusal to disclose non-sensitive information. These
results provide support for H2. For the remaining hypotheses, we
ot of AVEs (in the diagonal).

Privacy Concerns - Information
Collection

Privacy Concerns -
Unauthorized Info Use

Privacy Self-
Efficacy

0.85

0.54 0.83

�0.17 �0.01 0.93
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followed the recommendations in Hair et al. (2016) to assess the
moderating effects of privacy self-efficacy on password strength
and information disclosure. Neither the direct, nor the moderating
effects of privacy self-efficacy was significant. We also followed
Hair et al. (2016) recommendations on mediation testing in PLS
models in evaluating the mediating effects of password strength on
information disclosure. Neither the direct, nor the mediating effect
of password strength on sensitive information disclosure was
significant.

Common method bias is not a significant concern in the eval-
uation of the direct effects of awareness of information security
threats because the awareness is experimentally manipulated.
Common method bias could be a concern if the relationship be-
tween the password strength and refusal to disclose sensitive in-
formation was significant, but the relationship was not supported
by the data. To further assess the predictive quality of our model,
we examined the Stone-Geisser's Q2 for both the password strength
and sensitive information non-disclosure. The Q2 values for both
constructs are positive, indicating that the model has predictive
value for the respective constructs (Hair et al., 2016). We also
examined potential inner-model collinearity effects by examining
VIFs (Variance Inflation Factors), but found no evidence of signifi-
cant multicollinearity. The results of the alternatemodel evaluation
are summarized in Fig. 2.
5.2. Post-Hoc tests on password strength

Our operationalization of password strength was based on a
mathematical formula to determine the entropy of the password
Awareness of
information
security
threats

Passw
stre

0.23**

0.12*

Privacy self-
efficacy

Fig. 2. Structural m
given the number of character sets and the length. This entropy-
based measure is known to have limitations (Bonneau, 2012;
Kelley et al., 2012; Weir, Aggarwal, Collins, & Stern, 2010). For
example, the measure does not account for some commonly used
passwords that may receive reasonable entropy scores, e.g.
“abc123” and “trustno1”, but can be easily defeated in brute-force
password guessing attacks utilizing known weak password lists.
The latest research on the assessment of password effectiveness
suggests that subjecting passwords to brute-force attacks provides
a better measure of password strength (Ur et al., 2015).

To further evaluate the effects of the exposure to security
breach related stories on the strength of passwords in our study,
we conducted follow up tests to assess password guessability
using four different password guessing algorithms: probabilistic
context-free grammar (PCFG), Markov model password guesser,
John the Ripper and Hashcat. The full details of each algorithm are
beyond the scope of this manuscript. Here we only provide the
basic details of the password guessing strategies associated with
each of the methods. We refer the reader to Ur et al. (2015) for a
more detailed discussion of each method. The PCFG algorithm
generates password guesses based on the frequency of different
characters in a training dataset. The Markov model based algo-
rithm follows the implementation described in Ma et al. (Ma,
Yang, Luo, & Li, 2014). John the Ripper and Hashcat are wordlist
based password attack tools that are commonly used by both
hackers and system administrators conducting audits of user
passwords (Ur et al., 2015).

The results of the four password guessing tests, summarized in
Table 3, were consistent.
ord
ngth

Refusal to
disclose
sensitive

information

Age
Gender
Education
Privacy
concerns

Refusal to
disclose

non-sensitive
information

odel results.



Table 3
Logistic regression tests of exposure to security breach related news stories on the
guessability of passwords.

Algorithm The effect of exposure to security breach related news

Hashcat Model chi-square¼ 18.866, df¼ 4, p< 0.001
Treatment effect B¼�0.929, Wald statistic¼ 12.176, p< 0.001,

John the Ripper Model chi-square¼ 16.478, df¼ 4, p< 0.01
Treatment effect B¼�0.527, Wald statistic¼ 5.525, p< 0.02

Markov Model chi-square¼ 15.480, df¼ 4, p< 0.01
Treatment effect B¼�0.564, Wald statistic¼ 4.854, p< 0.05

CPFG Model chi-square¼ 17.356, df¼ 4, p< 0.001
Treatment effect B¼�0.528, Wald statistic¼ 6.26, p< 0.02
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The logistic regression tests using the successful password
guesses as the dependent variable (1 e guessed successfully, 0 e

could not be guessed), showed that participants exposed to security
breach related news stories used significantly harder to guess
passwords after controlling for age, gender and education. These
results provide further support for H1.
6. Discussion

The goal of our study was to gain insight into automatic re-
actions of technology users to potential security and privacy
threats, from the perspective of the Information Processing
framework (Beck & Clark, 1997). We conducted an experimental
study and evaluated the differences in the password strength and
non-disclosure between two groups. The control group was
exposed to general technology news and the treatment group was
exposed to news stories about security breaches involving private
information. Based on the premises of the Information Processing
framework, we expected that exposure to the news about security
breaches would trigger an automatic response reflected in stronger
passwords being used to protect participants' responses in our
study, and an increase in non-disclosure on a survey involving
personal questions. Because self-efficacy generally reflects a per-
son's experience and expertise (Bandura, 1982, 1997; Compeau &
Higgins, 1995), we expected that individual privacy self-efficacy
would positively moderate the effects of exposure to security
breach related stories on both the password strength and non-
disclosure. We found support for the positive effects of the expo-
sure on the password strength and a nuanced effect on the refusal
to disclose information. The treatment group exposed to the se-
curity breach news used much stronger (500�) passwords, using
the entropy measure, and almost impossible to guess passwords,
using a set of password cracking algorithms commonly used in
practice. The treatment group also selectively chose to limit
disclosure to particularly sensitive questions, e.g. the questions
concerning drinking and driving, drug use and support for the
death penalty. There was no effect on the refusal to disclose non-
sensitive information, for example, whether the person was right
or left handed.

Our hypotheses regarding the moderating role of privacy self-
efficacy in privacy-protective behaviors were not supported by
the empirical results. The lack of support for the role of self-efficacy
is not without precedent. Self-efficacy is commonly assumed to
play a role in reactions to threats; however empirical evidence has
not always supported theoretical models. For example, a study of
how people react to health threats showed that self-efficacy was
not a significant moderator of responses to health threats (Ruiter,
Verplanken, Kok, & Werrij, 2003). Experimental studies have
shown that different factors besides self-efficacy may play a role in
the behavioral response. For example, a study of people's reactions
to health threats found that avoidant thinking can be responsible
for the lack of an adaptive response to threat (Rippetoe & Rogers,
1987). Habits often exert influence over how people act (Umeh,
2004) and stress can also affect consideration of options and lead
to sub-optimal decisions (Keinan, Friedland, & Ben-Porath, 1987).
The results of our study suggest that self-efficacy does not interact
with any of the behavioral threat mitigation strategies (password
selection and self-disclosure). Future research should examine if
the role of self-efficacy is more prominent in the secondary elab-
oration stage of the Information Processing framework.

Our study makes a number of contributions to theory and
practice. First, while our study also applies cognitive models to
understand technology user behavior, its distinctive characteristic
is the focus on the immediate user responses to the potential se-
curity and privacy threats through the Information Processing
framework lens. From this perspective, we were able to examine
automatic responses as a result of a threatening stimulus that was
empirically manipulated. Thus, the application of the IP framework
in the information security and privacy research expands the
theoretical foundation for understanding user behaviors across
different contexts. The IP perspective is particularly relevant in the
many situations that require the users to make split-second de-
cisions, e.g. clicking on a link in a phishing email message and
entering authentication credentials. These contexts simply do not
afford sufficient time for slow cognitive processing and the IP
framework will likely prove useful in understanding user behaviors
in time-constrained situations.

Our second contribution is that this is one of the first studies to
examine objectively measured actual technology user behaviors in
response to security/privacy threats. While much of prior security
and privacy-related research focused on perceptions and intentions
in cross-sectional studies, we experimentally evaluate actual
technology user behaviors in response to a potential security/pri-
vacy threat. Our findings are consistent with the predictions of the
Information Processing framework which emphasizes that threat
detection occurs automatically and it motivates a rapid response,
while the process of sense-making involving assessment of indi-
vidual susceptibility and self-efficacy is secondary and often occurs
after the threat is mitigated. The non-significant effects of com-
puter security self-efficacy in our study are also consistent with the
predictions of the Information Processing framework and highlight
the importance of understanding the automatic responses to in-
formation security and privacy threats. Whereas much of the pre-
vious research on computer security related intentions has noted
the predictive value of self-efficacy in relation to the intention
(Johnston & Warkentin, 2010, 2015; Liang & Xue, 2010), we find
that privacy related self-efficacy does not predict actual behaviors
in automatic user behaviors in our study.

Our third contribution is to the previously proposed taxonomy
of privacy protective behaviors (Son & Kim, 2008). The original
taxonomy offered three general types of reactions to potential
privacy threats: information provisioning (withholding and
misrepresentation), complaints to the offending party, and com-
plaints to third parties. User authentication and information access
control are key aspects of information security measures focusing
on information confidentiality. Our results demonstrate that
authentication and access control are additional measures that
need to be included in the typology of potential responses. Further,
we also empirically validate the prediction made by the taxonomy
that non-disclosure can be one of the actions that allow technology
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users to counter privacy-related threats. Most importantly, our
results also reveal that users do not summarily stop self-disclosure
altogether in response to potential privacy threats, but instead
become very selective about what information they choose to
disclose.

Our fourth contribution is to the stream of literature on how to
encourage technology users to follow security guidelines and pro-
tect their information privacy and security (Arachchilage & Love,
2014; Ben-Asher & Gonzalez, 2015; Guo & Yuan, 2012). While a
variety of technical solutions to promoting strong password use
have been proposed (Chun-Li, Hung-Min,&Hwang, 2001; Cipresso,
Gaggioli, Serino, Cipresso, & Riva, 2012; Sasse, Brostoff, & Weirich,
2001), the use of weak passwords remains commonplace in prac-
tice (Bright, 2014; Hill, 2014). Our results suggest that presenting
users with narratives highlighting computer security threats may
be an effective way to stimulate adherence to using strong pass-
words. Embedding messages within narratives has proven to be an
effective technique in marketing (Dahl�en, Lange, & Smith, 2010)
and it may prove effective in promoting best security practices as
well. This approach could be useful in non-organizational contexts,
or in those without explicit compliance guidelines for password
selection and maintenance.

Lastly, we would like to note that no research study is without
limitations. While the experimental methodology allowed us to
evaluate the causal effects of an exposure to information about
potential security/privacy threats on password strength and non-
disclosure, the experimental environment does not necessarily
replicate real-world conditions. We aimed to create a realistic
environment by exposing the participants to representative
news excerpts which the study participants may have encoun-
tered in major media outlets, but the experimental manipulation
does not necessarily replicate a workplace context where em-
ployees may have certain expectations of security measures or
privacy protections. Our experimental setting resembles a
voluntary or a home computer use context, where users interact
directly with sites of their choosing. Further research is needed
to examine the extent to which different contexts play a role in
the perceptions of security and privacy threats. Our study also
lays the foundation for future research on the most effective way
Citation Context/method

Chan, Woon, and Kankanhalli (2005) A survey of employees
Pahnila, Siponen, and Mahmood (2007) A survey of employees
Myyry, Siponen, Pahnila, Vartiainen, and

Vance (2009)
A survey of employees in Finland

Son (2014) A survey of employees
Arachchilage and Love (2014) A survey of undergraduates in UK
Siponen, Adam Mahmood, and Pahnila (2014) A survey of employees
Crossler, Long, Loraas, and Trinkle (2014) Two surveys e students and employees
Boss et al. (2015) Two experiments involving undergradu

students
Posey, Roberts, and Lowry (2015) A survey using a panel of participants
Y. Chen and Zahedi (2016) A survey using convenience sample of st
Warkentin, Johnston, Shropshire, & Barnett

(2016)
A survey of undergraduate students

B�elanger, Collignon, Enget, and Negangard
(2017)

A survey of students, faculty and staff a

Burns, Posey, Roberts, and Benjamin Lowry
(2017)

A survey using a panel of participants

Crossler, Belanger, and Ormond (2017) A survey of soccer tournament participa
Thompson, McGill, and Wang (2017) A survey of participants recruited throu

data provider.
to present computer privacy and security messages with the goal
of eliciting stronger behavioral responses. For example, research
on priming has suggested that the text color may interact with
the narratives and produce stronger behavioral response to
textual messages (Gerend & Sias, 2009). There is also an op-
portunity to better understand the mental processes that un-
derlie the behavioral effects observed in our study. It would be of
interest to examine different primes and different mental pro-
cesses in relation to privacy and security related computer user
communications.
7. Conclusion

The present study takes the first steps towards understanding
how technology users react to potential immediate security and
privacy threats. We drew on the Information Processing framework
which emphasizes the primacy of threat mitigation action as the
theoretical lens and we conducted an experimental study in which
we evaluated users’ behavioral responses. Specifically, we exam-
ined the degree of self-disclosure and the strength of passwords
users set to protect their answers in response to an exposure to
several news stories about corporate computer security breaches.
We found that participants in our study readily reacted to news
stories about security and privacy breaches by using 500� stronger
passwords and selectively limiting disclosure of personal infor-
mation. Our study contributes to the existing research by offering a
novel theoretical perspective that can guide future research on the
immediate technology user reactions to potential threats. The study
also provides the initial empirical evidence that privacy and secu-
rity threats rapidly motivate protective behavioral responses. Our
findings are useful to practice as they speak to the importance of
exposing users to security-related narratives to promote the crea-
tion of stronger passwords.
Appendix A1. Behavior measures in PMT-related security
research
Security-related behavior measures

Self-report of organizational security policy compliance
Self-report of organizational security policy compliance
Self-report of organizational security policy compliance

Self-report of organizational security policy compliance
Self-report of phishing attack avoidance
Self-report of organizational security policy compliance

. Self-report of organizational security policy compliance
ate and graduate Data backups

Malware warning response
Self-report of security protective behaviors

udents and their contacts Self-report of security protective behaviors
Self-report of continued organizational security policy
compliance

t a university. Self-report of early organizational security policy
compliance
Self-report of security protective behaviors

nts. Self-report of security protective behaviors
gh a commercial panel Self-report of security protective behaviors
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Appendix A2. Self-disclosure measures in Information
Systems research
Citation Context/method Self-disclosure measure

Posey, Lowry, Roberts, and Ellis (2010) A survey administered through a market research firm in the UK
and France

Self-report

Zimmer, Arsal, Al-Marzouq, and Grover
(2010)

A survey of undergraduate students. Self-disclosure intention

Lowry, Cao, and Everard (2011) A survey of information disclosure in messaging applications Self-report
Jiang, Heng, and Choi (2013) A survey of students in Singapore Self-report
Yu, Hu, and Cheng (2015) A survey of students Self-report
Chen and Sharma (2015) A survey of students Self-report
Matook, Cummings, and Bala (2015) A longitudinal survey Self-report
Li et al. (2015) Panel data Secondary data, measure extracted as self-disclosure in

blog posts
Bansal, Zahedi, and Gefen (2016) Experimental study Self-disclosure intention
Choi and Land (2016) Experimental Self-report, willingness to share Facebook profile data
Zhu, Ou, van den Heuvel, and Liu (2016) A survey of students Self-report, willingness to disclose personal information
Liu, Min, Zhai, and Smyth (2016) A survey of micro-blogging service users in China Self-report
Li, Luo, Zhang, and Xu (2017) A survey of students Self-report
James, Wallace, Warkentin, Kim, and

Collignon (2017)
A survey of students Self-report of intention to disclose information about

others
Veltri and Ivchenko (2017) An experimental study Self-disclosure is measured using a survey
Lin and Utz (2017) An experimental study Subjective evaluation of others' self-disclosure
Shih, Lai, and Cheng (2017) A consumer survey Self-disclosure intention
Chen and Li (2017) A survey of SNS users in Hong Kong Self-report
Zhang (2017) A survey of SNS users Self-report
Appendix B. Sample News Stories
Control group Treatment group

Story 1.
Designed to transform digital marketing programs in the country, Adobe and

Razorfish have outlined a joint initiative for the Indian market. Leveraging their
global partnership, the two companies will develop solutions focused on digital
personalization for marketers in India.

Story 1.
Adobe Systems Inc. disclosed last month that hackers stole login information for
some 38 million of its customers.
Now Facebook Inc. and other Internet companies are worried their users might also
be affected.
Internet users, despite repeated warnings, often use the same password on many
different websites. So, even if Facebook wasn't hit by the latest cyber-attack, the
Adobe hackers still might be able to break into Facebook user accounts with recycled
passwords.

Story 2.
A Walmart executive recently laid out his company's strategy for the holiday

shopping season as follows: "We're going to win." Other retailers say the same.
Heavy discounting is predicted, and victories may prove pyrrhic in profit terms.
The stock market, however, has predicted one winner: Amazon. Its shares, which
had traded in line with consumer discretionary stock indices for three years,
started to rally after the third-quarter report in October. Its market value has since
risen by a quarter.

What has changed? Maybe nothing. There is a general fever for growth companies,
especially those with a technological frisson. Netflix and Facebook shares have
rallied, too. There was genuine improvement in Amazon's third-quarter numbers
- specifically, incremental sales in the quarter ($3.3bn) were greater than in the
third quarter a year ago ($2.9bn). This is a big deal, as there had been incremental
sales declines in the previous five quarters.

Story 2.
Hackers stole personal information with details of up to 70 million people e a third
of American adults e including phone numbers, email and home addresses, the US
retail chain Target admitted on Friday.
The management said that the extent of a 19-day pre-Christmas break-in to its
computer systems was far greater than it had thought when in late December it
estimated the number of credit and debit cards affected at 40m. It hadn't previously
said how many people were affected.
Analysts reckon it will affect more people than the card-skimming operation at TJX
Cos Inc in 2007, whichwas reckoned to affect 90m cards over an 18-month period. "I
think they still have no idea how big this is,"David Kennedy, who runs the consulting
firm TrustedSec told Reuters. "This is going to end up being much larger than 70
million and end up being the largest retail breach in history."
PrivSE1 For me to control my

PrivSE2 If I wanted to, it wou
PrivSE3 I believe I have the a
Appendix C. Survey instrument

All questions were assessed using 7-point Likert scale anchored
in 1 e strongly disagree and 7 e strongly agree, except for PrivSE1,
which was anchored in 1 e very difficult, 7 e very easy.

Privacy self-efficacy (based on (Compeau & Higgins, 1995))
privacy online is (1 e very difficult, 7 e very easy)

ld be easy for me to control my privacy online.
bility to have privacy online.
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Privacy concerns about information collection (Hong & Thong,
2013)
Priv_Col1 It usually bothers me when companies ask me for personal information.

Priv_Col2 When companies ask me for personal information, I think twice before providing it.
Priv_Col3 It bothers me to give personal information to so many companies.
Priv_Col4 I'm concerned that companies are collecting too much personal information about me.
Privacy concerns about unauthorized information use (Hong &
Thong, 2013)
Priv_Una1 Companies should not use personal information for any purpose unless it has been authorized by the individuals who provided the information.

Priv_Una2 Companies should devote more time and effort to preventing unauthorized access to personal information.
Priv_Una3 Computer databases that contain personal information should be protected from unauthorized accessdno matter how much it costs.
Priv_Una4 Companies should never sell the personal information in their computer databases to other companies.
Self-disclosure survey.
Please refer to Joinson et al. (2008)for details regarding the

instrument.
Appendix D. Non-disclosure response to individual survey
questions.
Question Percent non-disclosure -
General tech news group

Percent non-disclosure - Security
breach news group

Z test score for the
difference in proportions

Which season were you born in? 2.62% 3.02% 0.24
Are you left or right handed? 1.05% 1.05% 0.00
How many different sexual partners have you had? Please include all,

however brief
8.90% 10.47% 0.52

Since age 18 how many different serious relationships have you had? 4.71% 4.71% 0.00
Have your partners been opposite/same sex? 4.19% 5.24% 0.49
What are your living arrangements? 3.66% 2.62% �0.59
Have you ever driven whilst you suspected you may be over the legal

alcohol limit?
3.66% 7.85% 1.77*

Have you ever deliberately viewed pornography using the internet? 7.33% 9.42% 0.75
As an adult, have you ever tried any drugs (other than alcohol and

nicotine, e.g. marijuana, cocaine, ecstasy, heroin)
3.14% 8.90% 2.38*

Are you a religious person? 5.76% 4.19% �0.71
Have you ever passed by and ignored someone who needed help? 6.81% 5.24% �0.65
Do you agree with the death penalty? 2.62% 7.85% 2.31*

Have you ever pretended you could not do a favor for someone, while in
reality you did not want to do it?

4.19% 4.19% 0.00

As an adult, have you ever felt depressed? 3.66% 6.28% 1.19
Please estimate the number of times you have visited a doctor in the last

two years?
2.09% 3.14% 0.65

Do you give to charity? 2.62% 2.62% 0.00
Please rate your health in comparison to that of your peers on the

following scale
19.37% 19.37% 0.00

Have you ever been in a traffic collision that was at least partly your fault? 1.57% 3.66% 1.29

*- statistically significant one-tailed test at p < 0.05 level.
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